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1 Introduction

The wage structure of the U.S. economy has changed tremendously since the 1970s.1 In particu-

lar, it is well documented that the returns to both education and experience have dramatically

risen. There are several explanations for this phenomena, such as skill-biased technological

change and a general shift from manufacturing to service industries. But what have been the

consequences of this turbulence for educational investments of individuals during this period?

To what degree did these changes in the wage structure drive increases in schooling?

The challenge to analyzing these issues is incorporating a plausible model of how individ-

uals form expectations about the future returns to education and experience–it is unlikely

that individuals could foresee these dramatic changes in the 1980s, say. We therefore propose

a dynamic programming model of educational choices in which individuals rely only on in-

formation that is contemporaneously available in determining their forecasts regarding future

wage distributions, and that also accounts for the inherent uncertainty in forecasting due to the

reliance on parameter estimates. Expectations of future distributions, and hence forecasting,

are key assumptions in dynamic models. It is therefore vital that we examine the sensitivity of

predicted behavior to alternative forecasting methods.

Economists have long recognized the importance of expectations to individuals’ educational

choices.2 However, it remains a difficult challenge for empiricists because expectations are

obviously unobserved, and because we can never be certain how individuals use the available

information to assess the future. One approach is to assume individuals know all future con-

ditional wage distributions (but of course do not know the particular wage draws they will

obtain from these distributions). This is a convenient assumption that helps impose a degree of

internal consistency on the model, and if the wage structure were reasonably stable over time

(which it was not) this may actually be a good approximation to reality. Such an approach

may be termed rational expectations (although this term can be interpreted more broadly as we

discuss below). We are not the first to question the empirical validity of rational expectations–

see Manski (2004) for a critique of the empirical relevance of rational expectations (and the

references cited therein).3

The method we propose incorporates forecasting of future wage distributions based on con-

temporaneously available information into a dynamic programming framework which naturally

emphasizes the importance of forward-looking decision making. A key element of our frame-

work is that we explicitly take account of the inherent uncertainty associated with forecasting.

That is to say, the agent in our model is aware that their forecast of future wage distributions

1See for example Juhn, Murphy and Pierce (1993), Katz and Murphy (1992), and Buchinsky (1993).
2See for example: Belzil and Hansen (1997,1999), Keane and Wolpin (1997), and Taber (2000,2001). Other

prominent studies that investigated investment in human capital under uncertainty include Becker (1964), Ben-
Porath (1967), Blinder and Weiss (1976), Griliches (1977), Heckman (1993), Heckman, Roselius and Smith (1994),
Rosen (1976), and Willis and Rosen (1979). For a variety of interpretations on the theory of human capital see
the survey by Willis (1986).

3Manski (2004) emphasizes the point: "If experts disagree on the returns to schooling, is it plausible that
youth have rational expectations? I think not." (p. 1336).

1



is an uncertain forecast, which may also impact their optimal choices. This complication is

not merely an artifact of our framework, but is conceivably an important issue for individuals’

actual decision making. From an agent’s point of view, the uncertainty that stems from having

to draw wages from a known distribution is augmented by the uncertainty over which distrib-

ution they will be drawing from. This framework is potentially useful for other applications in

which the analysis of individuals’ choices incorporates anticipated future returns, such as: fam-

ily planning, savings and financial investments, investment in health, investment in children,

retirement decisions, immigration and relocation choices, and other specific forms of human

capital investment.

We compare the performance of our method with alternative models of forecasting behavior.

To implement this we develop a finite horizon dynamic optimization model in which a risk

averse agent decides in each period his current consumption level and whether to attend school

or to work. As is standard in such models, the valuation of alternative choices is obtained by

integrating over uncertain future outcomes, including wages which depend on the individual’s

level of education and experience. The different forecasting models imply different distributions

of expected future outcomes.

Our approach is part estimation and part calibration. The estimated components are as

follows. An input to the dynamic optimization problem is the underlying conditional wage

distributions. We flexibly estimate these distributions using the semi-parametric technique of

quantile regression, in which we account for self-selection using the method of Buchinsky and

Hahn (1998). The data come from the March Current Population Survey for the years 1964

to 2004. As we explain in Section 2 below, there is no additional estimation if we assume the

agents knows all future conditional wage distributions (at any point in time). In the model

where agents rely on past information to forecast future wage distributions we estimate a VAR

model, as detailed in Section 2. The model also includes a parameter of the utility function (the

coefficient of relative risk aversion) and a discount rate. While it is conceptually possible it is

highly burdensome to estimate these parameters, and beyond the scope of this paper. Instead,

we specify values for these parameters that are within the range of what has been previously

obtained in the literature (as described in Section 5).4

We also examine three issues of policy-relevance that our preferred model is particularly well-

suited to analyzing. First, we consider how individuals with differing degrees of risk aversion

make educational choices. We find that increasing the degree of risk aversion leads to lower

educational investment. This is because, according to our analysis, education is a more risky

investment than experience, at least during the period we study. The second issue we analyze

is the importance of financial resources for individuals considering higher education. We assess

this by examining the potential impact of changes in initial wealth on educational choices. We

find that raising initial wealth from $5,000 to $50,000 for individuals who graduated high school

4 In our model each period new information arrives, forecasted future wage distributions are updated, and the
value function is re-computed by backward recursion. In fact the computational burden is even more severe once
we also account for parameter uncertainty in the forecasting rule, as we explain below.
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in 1985 leads to an increase in the average accumulated education of about 0.7 years. Higher

initial wealth also increases the speed at which education is accumulated. The third issue of

policy-relevance we explore is the impact of tuition costs. Incorporating actual tuition costs

into the model leads to a sharp drop in the average accumulated education by almost one year.

One concern with the approach we have outlined above is that unobserved heterogeneity or

state-dependence in wages may change the qualitative conclusions of our analysis. It is possible

that either of these factors may reduce the uncertainty in the returns to education and/or

experience, leading us to systematically either over- or under-predict average investment in

education. We therefore extend the model to include both, as is explained below. In both

of these cases the predictions from the model are qualitatively unchanged, although there are

some quantitative differences.

The remainder of the paper is organized as follows. In Section 2 we detail our modeling

framework, including the information environment, the forecasting model and the role of pa-

rameter uncertainty. The data is described in Section 3, and Section 4 summarizes the results

from the estimation of the conditional wage distributions. In Section 5 we examine the results

of a large set of simulations designed to contrast the implications of the various forecasting

methods. In Section 6 we examine the role of tuition costs, unobserved heterogeneity and state

dependence in wages. Concluding remarks are offered in Section 7. An Appendix provides a de-

tailed description of the computation of the posterior distribution of the model’s parameters via

Gibbs sampling, which is needed for the model in which we incorporate parameter uncertainty.

2 The Framework for Educational Choices under Uncertainty

In this section we present our framework for analyzing educational choices of individuals in

a changing economic environment. Our approach incorporates forecasting of future of condi-

tional wage distributions into a dynamic model of individuals’ educational choices, in a manner

that explicitly accounts for the inherent uncertainty associated with predicting the future. In

particular, we incorporate:

1. uncertainty over realizations of future wage offers from known future conditional wage

distributions; and

2. uncertainty because future conditional wage distributions are unknown, stemming from

two distinct sources:

(a) uncertainty in the parameters of the forecasting rule that maps past known condi-

tional wage distributions into future unknown conditional wage distributions; and

(b) uncertainty due to the use of estimated rather than known past conditional wage

distributions, which are an input into the forecasting rule for future conditional

wage distributions.
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Prior research incorporates the first source of uncertainty. One key innovation of this paper

is to propose a method that also incorporates the sources of uncertainty in the second category.

Our goal is to incorporate a realistic forecasting model into an analysis of individual’s

schooling decisions. In doing so we focus on incorporating uncertainty about aggregate para-

meters (future wage distributions), while presuming certainty over individual parameters (such

as parameters of the agent’s utility function). Of particular importance in our approach is the

information set and its revelation over time, that is relied upon by the economic agent as well

as the econometrician. As is explain in detail below, the agent is treated equivalently to the

econometrician so that both have the same information at each point in time with more infor-

mation becoming available to both over time. Another key feature is that our approach is part

estimation and part calibration and it is important that we are clear about these components.

2.1 Information Environment and Agents’ Decision Problem

The agent in our model makes decisions about consumption, investment in general education

and labor supply. The agent’s objective is to maximize at each point in time (t) the present dis-

counted value of the expected future utility from a single consumption good: ct. One approach

to this problem is to assume that the underlying distributions are stationary, so that future

distributions can be directly estimated from past data. However, there are many cases in which

stationarity is unrealistic, especially in periods where the underlying distributions go through

dramatic changes, such as the changes we observed in the wage structure in the U.S. over the

past few decades.

We do not assume stationarity in our approach. Rather, we assume that the agent has access

to estimates of past wage distributions from which they forecast future distributions. These

forecasts may be subject to errors of various kinds, including errors in the forecasting model and

errors in the estimates of past wage distributions. We make no explicit assumption about the

true data generating process (DGP) for the evolution of actual conditional wage distributions,

which presumably depend on many factors (including macroeconomic variables). The agent

and the econometrician are agnostic about this aspect of the underlying DGP. To be clear,

however, our characterization of agents use of past data to estimate past wage distributions,

which is used as an input for computing estimates of future conditional wage distributions,

should be interpreted as the true DGP governing the agent’s decision process.

It is also worth noting that the individual does not know the aggregate wage distributions

and thus needs to estimate these, but he/she knows his own wage at any point in time. Also,

the individual has no uncertainty about the parameters that correspond to his/her own prefer-

ences. The individual knows his/her discount factor, the parameter the correspond to his/utility

function, etc.

Assume that individuals have access to data from which they estimate parameters of past

wage distributions. Denote the true past conditional distribution at year t by f (w|s;βt), where
s is a vector of observable attributes (for both the individual agent and the econometrician) at
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year t, and βt is the vector of true parameters that correspond to year t. Hence, given βt the

conditional distribution of wage f (w|s;βt) is known. Given this structure, let βth denote the
set of past true vectors of parameters that correspond to the wage distributions from year t−h
to the current year t:

βth = (βt−h, βt−h+1, ..., βt) . (1)

Importantly, as mentioned above, neither the agent or the econometrician know the values

in βth, and thus need to estimate them from data available for past years. Let β̂t denotes

the estimate for the year t parameter vector βt, and let β̂th denote the estimate for β
t
h. The

distinction between true parameters and estimated parameters is crucial, because it implies

the agent is uncertain about past conditional wage distributions, which are the key ingredient

to forecasting future wage distributions. Accounting for this parameter uncertainty into the

forecasting method of future distributions is a central feature of our framework.

We assume that the agent estimates past wage distributions using quantile regression.

Specifically, the agent obtains β̂t−h from running a sequence of quantile regressions for each

of the years t − h through t. The entire information obtained from this procedure for year t

is contained in β̂th. Below we detail the structure and estimation of β̂
t
h, and for the remaining

explanation in this section we can assume that the individuals are provided with β̂th.

To forecast future wage distributions we assume the agent employs a vector auto-regressive

(VAR) model. Let θV AR denote the parameter vector containing all true values for the VAR

model’s parameter, and let θ̂V AR,t denote the estimate for θV AR, obtained at time t (using all

the available information from t − h to t). The VAR model provides the mapping from β̂th to

forecasted future values of βm (for m = t+1, t+2, ..., T ). Similar to βth, the fact that the agent

does not know the true VAR model’s parameter but only has estimates of these parameters,

implies an additional sources of parameter uncertainty that one also needs to account for when

forecasting future distributions.

There is an important distinction between past and future wage distributions at any point

in time. Consider an agent at time t. The agents has estimates of past wage distributions,

which are based on data, denoted by β̂th. The agent inputs these estimates into the estimated

VAR model to generate forecasts of future wage distributions, that we denote by ˆ̂βt+1, ...,
ˆ̂
βT .

Note, in order to clearly distinguish between past and future, we generically denote the former

by β̂, and the latter by ˆ̂β. Formally, predicted future parameter vectors are obtained recursively

via:

ˆ̂
βm = h

³
ˆ̂
βm−1, θ̂V AR,t, β̂

t
h

´
,

where h (·) denotes the function that is implied by the VAR model (the exact definition is

provided below). It is important to note that as the agent (and the econometrician) moves

forward in time more information regarding past wage distributions becomes available (i.e., the

data for the most recent year). Hence, in order to incorporate all available information at any
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given time the individual re-estimates the VAR model’s parameters every period.

Lastly, a point of clarification about the DGP we have outlined in this section. In principle

there can be a distinction between: (i) the true DGP; (ii) what the agent uses to approximate the

true DGP; and (iii) what the econometrician uses to approximate the true DGP.5 It should be

clear from the above description that in our approach (ii) and (iii) are the same. Furthermore,

we assume the above model is a complete description of the true DGP for how individuals

make decisions. But we are agnostic about the underlying DGP of the evolution of conditional

wage distributions–the VAR model is not intended as a true description of the DGP for the

evolution of conditional wage distributions over time, but rather a flexible-form model that

approximate the historical evolution, and which, we assume, individuals utilize for forecasting

future distributions. In other words, we assume that the VAR model is the true model used by

individuals in making education choices, but this is different to assuming that the VAR model

is the true model of how conditional wage distributions are evolving over time.6

2.2 The Behavioral Model

As outlined above, the agent is forward looking and relies on contemporaneously available

information to forecast the necessary future wage distributions. This forecasting behavior is

embedded in a life-cycle model in which the objective of the agent is to maximize their life-time

discounted expected utility from a single consumption good, c. Conditional on the information

available to the individual at each time t, the agent chooses their optimal level of consumption

and whether to attend school or to work. Education choices have an immediate effect on utility

via the current period budget constraint, i.e., foregone wage. Education choices also have an

inter-temporal effect by altering the agents attributes (level of education and labor market

experience) which determine future wage distributions. The immediate and inter-temporal

effects imply a trade-off the agent must decide upon.

At time t, given the state vector zt (defined below), the individual solves the problem given

by
max{cτ ,eτ}Tτ=t

PT
τ=t δ

τ−tE [u(cτ ) | zt]
subject to:

Bτ = (1 + rτ )
£
Bτ−1 + (1− eτ−1)wP

τ−1 − cτ−1
¤
;

cτ ∈
£
0, Bτ + (1− eτ )w

P
τ

¤
; and

Sτ ≤ S,

(2)

where u(·) is a per-period concave utility function. The expectation is taken with respect to all
sources of uncertainty associated with future wage distributions, including uncertainty because

the agent faces a wage distributions (rather than a sequence of known wages); and uncertainty

5We are grateful to the editor for proposing this classification.
6One interpretation is of the distinction made at the start of this paragraph is that if (i), (ii) and (iii) are all

the same, then the model can be said to include rational expectations. Since we do not provide a description
of the true DGP for the evolution of future wages, we would argue that (i) is not the same as (ii) and (iii).
Therefore, the model does not include rational expectations. But that may be merely a semantic issue.
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because future wage distributions are unknown. It is important to note that the agent has

no uncertainty regarding their utility function. That is, the agent knows all the parameters

associated with his utility function, including his discount factor and taste for risk.

The variables cτ and eτ are the agent’s choices of consumption and education, respectively,

at time τ (eτ = 1 if the individual chooses to attend school and eτ = 0 otherwise). The term Bτ

denotes the individual’s level of wealth at the beginning of period τ , rτ denotes the interest rate

paid on wealth held from time τ − 1, and δ is the individual’s discount factor.7 The quantity

wP
τ is the wage offer (or potential wage) at time τ that will be realized only if the agent chooses

to work. Consequently, the individual’s observed wage is given by wτ = (1− eτ )w
P
τ .

Lastly, Sτ denotes the level of education acquired by the beginning of period τ (i.e., Sτ =Pτ−1
j=0 ej). We impose an upper limit (S) on the level of education an individual can acquire.

The cost of education in the base model is the opportunity cost of foregone income. In the

results section below we also incorporate the direct cost of education (tuition fees).8 Note also

that in this model individual is not allowed to borrow against future earnings. Consequently,

the level of initial wealth is likely to play a major role. We investigate below the extent of this

borrowing constraint on individuals’ educational attainments.

The agent’s wage offer at time t is a draw from the conditional wage distribution, conditional

on their vector of characteristics sit:

wP
it ∼ f (·|sit;βt) .

We assume that sit = (Sit,Xit), where Xit denotes the individual’s labor market experience at

time t. In principle, we can also account for an unobservable individual-specific characteristic.

In the results section below we provide results from simulations that incorporate unobserved

heterogeneity.

The vector of state variables is given by

zit =
³
Sit,Xit, Bit, w

P
it , β̂

t
h

´
. (3)

Note that zit does not include the quantile regression, or the VAR model, parameter estimates

since all these can be derived from β̂th, as explained below.

The maximization problem in (2) involves optimally choosing the consumption and educa-

tion paths for all years τ = t, . . . , T . The maximal expected value of the discounted life-time

7Here, we do not estimate δ, but rather calibrate it as is explained below.
8 In principle one could also include additional pecuniary, as well as non-pecuniary costs, which depend upon

observable and unobservable characteristics of the individual. For example, there may be a non-pecuniary cost
associated with returning to school, or costs which depend on the unobservable health status of the individual
and/or his family.
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utility from consumption at time t is given by

V (zt, t) = max
{cτ ,eτ}Tτ=t

(
E

"
TX
τ=t

δτ−tu(cτ )

¯̄̄̄
¯ zt
#)

,

where, due to the finite horizon nature of the problem, the value function depends not only on

zt, but also on the time period t. Note, the agent in our model decides whether they will work

or attend school, but not the number of hours supplied to the labor force. Another implication

of the model is that if the agent has achieved S years of schooling then they must work, and

the only decision is about the level of consumption.

It is convenient to write the associated Bellman’s equation in two parts:

Value from attending school

V S(zt, t) ≡ V (zt, t | et = 1) =
sup

c∈Γ(zt|et=1)

©
u(ct) + δE

£
max

©
V S(zt+1, t+ 1), V

L(zt+1, t+ 1)
ª¯̄
zt, et = 1

¤ª
. (4)

Value from working

V L(zt, t) ≡ V (zt, t | et = 0) =
sup

c∈Γ(zt|et=0)

©
u(ct) + δE

£
max

©
V S(zt+1, t+ 1), V

L(zt+1, t+ 1)
ª¯̄
zt, et = 0

¤ª
, (5)

where the correspondence Γ(zt) defines the feasible set of choices at time t.

The corresponding value function at time t is simply

V (zt, t) = max
©
V S(zt, t), V

L(zt, t)
ª
, (6)

for t = 0, . . . , T − 1. At t = T (final period of the model) we let

V (zT , T ) = u (BT +wT ) , (7)

That is, in the final period the agent consumes all remaining wealth.

2.3 Reservation Wage Property

The agent chooses to attend school only if V L(zt, t) > V S(zt, t). Under mild assumptions this

implies a reservation wage property. That is, there exists a reservation wage ϕ (zit) such that,

for all wP
t ≥ ϕ (zit), the agent chooses to work.9 We now briefly discuss the conditions the

imply the reservation wage property and their implications. This is provided for illustration

purposes assuming that the individual wage follows an AR (1) process, but it has no implication

9 In practice the computation of the value functions associated with the choice of education and work do not
make use of the reservation wage property.
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about the way we estimate the population wage distribution as is explained below.

As stated above, we assume u(·) is a concave utility function, so that u0(·) > 0. We

also assume that the conditional wage distributions exhibit first order stochastic dominance in

education, S, and experience X.10 Furthermore, we assume that the (log) wage equation takes

the canonical form

logw = γ0t + γ1tS + γ2tX + γ03ttMt + ξt, with

ξt =

(
ρξt−1 + ξt if et−1 = 0,

ξt if et−1 = 1.
,

ρ > 0, and

ξt ∼ i.i.d.
¡
0, σ2ξ

¢
,

where the vector Mt consists of relevant characteristics.11 Note that the parameters γj (j =

0, 1, 2, 3) are allowed to change over time, but are common to all individuals at any given time

t. There is strong support in the literature for the assumption that ρ > 0 (see Abowd and

Card, 1989, and Gottchalk and Moffitt, 2002).

Under the assumptions stated above it follows that the value function V (zt, t) is continuous,

bounded, increasing, and strictly concave (e.g., Atakan, 2003, Corollary 1, p. 453). It follows

that V L(zt, t) is strictly increasing and concave in ξt−1, while V S(zt, t) is non-increasing in ξt−1,

so that
∂
£
V L(zt, t)− V S(zt, t)

¤
∂ξt−1

> 0.

The implication of this result is that there is a reservation wage w0 ≡ ϕ(zit), such that for any

draw w1 > w0 the agent will choose to work instead of a year of schooling. By construction,

this reservation wage is a function of all the state variables. It is not necessary to know the

exact form of the function ϕ(·) to use the censored quantile regression estimation method we
describe below.

The conditional wage distribution can be identified by first estimating the probability that

an individual will participate in the labor market, and then plugging the estimated probability

into the objective function of the censored quantile regression. That is, the probability and

the regression depend on the same variables. However, for efficiency reasons we also include

additional variables, which are not included in zt (as described below).

10This simply means that the distribution of wp
t conditional on E and X first order stochastically dominates

the distribution of wp
t conditional on E

0,X0 for any E ≥ E0 and X ≥ X0, with strict inequality for at least one of
the two variables. Also, it is worth noting that, literally speaking, this assumption violates Mincer’s specification
in which the value of experience falls toward the end of the life-cycle.
11This form of the wage equation is consistent with the estimation of the conditional wage distribution described

below. Nevertheless, we make no attempt to recover the “structural” parameters, i.e., γ’s, ρ, and σξ, but rather
to obtain a parsimonious characterization of the conditional wage distribution using quantile regression.
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2.4 The Role of Parameter Uncertainty

Parameter uncertainty plays a major role in our analysis and this section we provide a more

formal description of how it is incorporated into the analysis. Recall that in order to compute

the value functions in (4) and (5) it is necessary to calculate E [V (zt+1, t+ 1)| et, zt], where
V (zt+1, t+ 1) is defined in (6). This expectation is taken with respect to all random variables:

wP
t+1 as well as

ˆ̂
βt+1:

E[V (zt+1, t+ 1)|et, zt] =
Z Z

V (t+ 1, zt+1)dP
³
wP
t+1,

ˆ̂
βt+1 | et, zt

´
, (8)

=

Z ∙Z
V (t+ 1, zt+1)dP

³
wP
t+1|

ˆ̂
βt+1, et, zt

´¸
dP
³
ˆ̂
βt+1|et, zt

´
,

=

Z ∙Z
V (t+ 1, zt+1)dP

³
wP
t+1|

ˆ̂
βt+1, et, zt

´¸
dP
³
ˆ̂
βt+1|zt

´
,

where the last equality stems from the fact that

Pr
³
ˆ̂
βt+1|et, zt

´
= Pr

³
ˆ̂
βt+1|zt

´
,

i.e., the distribution of future wage distributions’ parameters does not depend on any specific

individual’s choices.

The most common practice in the literature is to treat ˆ̂βt+1 as if it were the true parameter

vector βt+1, and instead of computing (8), to compute:

Eβt+1 [V (zt+1, t+ 1)| et, zt] =
Z

V (zt+1, t+ 1)dP (w
P
t+1|

ˆ̂
βt+1, et, zt), (9)

where Eβt+1(·) denotes that the expectation is taken holding
ˆ̂
βt+1 constant. How important it

is to incorporate parameter uncertainty is an empirical question, and in the analysis below we

attempt to shed light on this aspect.

2.5 Forecasting Future Distributions

2.5.1 Estimating βt from past wage data using quantile regression

There are many possible ways of estimating conditional wage distributions using parametric,

non-parametric, and semi-parametric approaches. We prefer to use quantile regression for

several reasons. First, quantile regression provides a parsimonious characterization of all con-

ditional wage distributions that is particularly convenient for implementation in the dynamic

choice model due to the discretization of wages. Second, it is a semi-parametric method that

assumes only certain conditional quantile restrictions.12 Third, there are censoring problems

12One can certainly estimate conditional distributions non-parametrically, but forecasting these distributions
into the future becomes intractable given the framework we adopted here.
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with the CPS data (described in Section 3) used in this study that the quantile regression

method is well-suited to deal with.

We assume that the wage distribution can be approximated arbitrarily closely by a sequence

of quantile regressions. In this study we discretize the distributions into five quantiles, assigning

each of these quantiles, located at the .1, .3, .5, .7, and .9 quantiles, a probability mass of .2.13

We assume that wages depend on education and experience, and we allow for a flexible functional

form for the conditional quantiles (by including polynomials in education and experience as

regressors).

The qth conditional quantile of earnings, conditional on sit, is given by Quantq(w
P
it |sit) =

s0itβt,q, where 0 < q < 1, and βt,q is a K × 1 parameter vector. The corresponding conditional
quantiles are

s0βt,q, for q = .1, .3, .5, .7, .9,

and for all years for which we have data.

We denote the 5K × 1 stacked vector of the population parameters for year t by

βt =
¡
β0t,.1, β

0
t,.3, β

0
t,.5, β

0
t,.7, β

0
t,.9

¢0
, (10)

and denote its estimate by β̂t. Note that βt and β̂t correspond to βt and β̂t defined generically

in Section 2.1. For convenience we denote Bβt as the matrix version of βt, and let B̂βt denote

the estimate for Bβt , that is:

B̂βt = (β̂t,.1, . . . , β̂t,.9),

where β̂t,q is the quantile regression estimate for βt,q, for q = .1, .3, .5, .7, .9. Then the estimated

conditional distribution of earnings, conditional on any vector of characteristics, say s0, is

provided by n
s00β̂t,.1, s

0
0β̂t,.3, s

0
0β̂t,.5, s

0
0β̂t,.7, s

0
0β̂t,.9

o
= s00B̂βt ,

where each point of support has a probability mass of .2. As we explained above, the individual

is presumed to undertake this procedure using data from years up to the current decision year

to obtain a sequence of estimates: β̂t−h, ..., β̂t for βt−h, ..., βt. The individual then uses these

estimates to forecast future βt’s. These forecasts allow one to characterize all future conditional

distributions that are necessary for computing the expectation in (9). However, to be able

to compute the expectation in (8) we must also obtain the joint distribution of all parameter

estimates. Before explaining how to obtain this joint distribution, we first explain how to use

β̂tt−h to predict
ˆ̂
βm, for m ≥ t.

13Discretizing continuous distribution by a finite points of support is a common practice in the literature,
especially in studies that use dynamic programing models. This is essentially what we do here: each conditional
distribution is being discretized.

11



2.5.2 Forecasting future distributions via a VAR model

We assume agents uses the widely accepted vector autoregression (VAR) model to form forecasts

about future distributions. Formally:14

βτ+1 = a+Aβτ + ντ , for τ = 0, . . . , t, (11)

where ντ ∼ i.i.d.N (0,Σν). Recall that βτ is a 5K× 1 vector, so a is a 5K× 1 parameter vector
and A is a 5K × 5K matrix of parameters. For convenience we define C 0β = (a,A) and the

stacked vector of the columns of Cβ by cβ = vec(Cβ). As discussed above, we assume this is

the true DGP for how individuals forecast future conditional wage distributions. However, we

do not assume this is the true DGP for the actual evolution of conditional wage distributions

(rather as a flexible-form model that provides individuals with a good approximation for the

evolution of βt).

If βt−h, . . . , βt were known, it would be straightforward to obtain an estimate for Cβ, and

consequent forecasts for all the necessary βt’s into the future. The problem the agent (and the

econometrician) face is that we only observe β̂t−h, . . . , β̂t. Ignoring that these are only estimates

of the true parameters would yield inconsistent estimates for Cβ. However, note that β̂t may

be expressed as

β̂τ = βτ + τ for τ = t− h, . . . , t. (12)

That is, the estimate β̂τ is decomposed into the true parameter βτ and and an estimation error

τ . We further assume, as is commonly done in the literature, that τ ∼ i.i.d.N (0,Σ ), and that
τ and ντ are uncorrelated with each other in every period. Equations (11) and (12) provide a

special case of the Kalman filter framework, whereby (11) is the state variable (or transition)

equation, while (12) is themeasurement equation.15 For convenience let θV AR denote the vector

containing all the VAR model’s parameters: a, A, Σν , and Σ . Having specified the distributions

for both τ and ντ , we use the well-known Kalman filter framework for estimating Cβ.16

The agent uses all available data up to the year in which he makes the decisions, say t. In

period t + 1 additional data become available. From that data the individuals can estimate

β̂t+1. The agent then re-estimates the VAR model using the additional estimates. If there are

no dramatic changes in β̂t, as was the case in the U.S. during most of the 1970s, there may be

minor changes in the estimate Ĉβ. However, for more dramatic changes in the observed wage

structure, such as those that happened during the 1980s, there may be considerable change in
14We also tried an alternative specification in which we considered a VAR model, but in differences. That is,

estimating a VAR model for ∆βt ≡ βt−βt−1. This model performed badly in terms of within-sample predictions
as well as of out-of-sample predictions. Another alternative we considered was a simple AR(1) model fitted to each
coefficient separately. However, the problem with this model is that it does not take into account the dependence
between the various coefficients over time, and especially the high correlations between the coefficients of the
same variable across the various quantiles.
15For details see, for example, Harvey (1991, pp. 82—105).
16The derivation of the maximum likelihood estimate for Cβ has been described and discussed in num,erous

text books. For a complete detailed dicussion of the Kalman filter and the estimation see, for example, Chapter
13 of Hamilton (1994).
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the estimate Ĉβ as the agent moves forward one year at a time.

In principle (with enough data) the model outlined above may be fully estimated. Since

the CPS is an annual survey which began in 1964, we have a limited amount of data and we

therefore impose some further simplifications for the model’s parameters. Specifically, we allow

each parameter in each of the five quantile parameter vectors to depend only on past values of

that particular parameter and the value of that particular parameter for the other four quantile

vectors, that is:

βτ,q,k = φqk +
X
p

δq,kβτ−1,p,k + ζqk,

where k = 1, . . . ,K; q = .1, .3, .5, .7, .9; p = .1, .3, .5, .7, .9; and where the φ’s and δ’s are

the unrestricted parameters (in Cβ) to be estimated. The covariance matrices Σν and Σ are

restricted to be block diagonal matrices of the form Σν = I5 ⊗ Σν0 and Σ = I5 ⊗ Σ 0, where

Σ 0 and Σν0 are K ×K symmetric matrices.

Note that the model in (11) and (12) implies that a forecast for future βt’s is provided by

ˆ̂
βm = â+ Â

ˆ̂
βm−1 +

³
m − Â m−1 + νm−1

´
, (13)

for m > t, where â and Â are the estimates for a and A, respectively. Since the best predictions

for m and νm are zeros, it follows that best prediction for βm is simply

ˆ̂
βm = â+ Â

ˆ̂
βm−1.

In order to account for the prediction error in (13) one needs to integrate over the distribution

of m − Â m−1 + νm−1. Since each of these random vectors is 5K × 1 the computation of
the inner integral in (8) is infeasible. Hence, in the computation of the value function we do

not integrate over this joint distribution. Nevertheless, what we do integrate over provides a

significant advancement over what has been previously done in the literature, because we do

treat (in the VAR-Gibbs forecasting method) â and Â as random variables that contribute to

the parameter uncertainty the individuals are faced with.17

The process of re-estimating the VAR model each model each period given the new in-

formation can be characterized as a learning process. That is, in each period t the agent

has a prior belief over the joint distribution of the models parameters, then examines the

information that becomes available at this time (β̂th) and modifies this belief to yield a poste-

rior distribution of those same parameters. In the appendix we specify the prior beliefs and

explain how to obtain the posterior joint distribution for all of the model’s parameter, i.e.,³
ˆ̂
βt+1, ...,

ˆ̂
βT , Cβ,Σν ,Σβ|β̂th

´
, using a Gibbs sampler. This posterior distribution is then used

in (8) for computing the current period value function.

17 It is worthwhile noting that the estimated variation of bot tand νt were found to be relatively small in
comparison with the other random elements in the model. This strongly suggests that the problem we do solve
closely approximates the one in which one integrates over the distribution of t +A t−1 + νt−1.
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2.6 The Sequence of Events

In the above sections we have described a framework that includes several components: a model

of behavior, estimation of past distributions’ parameters, and a forecasting procedure. We now

clarify the exact sequence of events within the framework:

1. The agent arrives at the beginning of period t with the following components of the state

vector: St, Xt, and Bt.

2. The agent is presented with a wage offer wP
it , and the additional wage data for year t.

3. The agent estimates the vector of parameters pertaining to the current year (i.e., β̂t). The

relevant information for all past distribution is now given by β̂th =
³
β̂t−h, β̂t−h+1, ..., β̂t

´
.

4. The agent estimates the VAR model parameters, using the “data” provided in β̂th, by

applying the Kalman filter framework.

5. The agent computes forecasts for all parameter vectors of future distributions (i.e.,
ˆ̂
βt+1, ...,

ˆ̂
βT ).

6. Given ˆ̂βt+1, ...,
ˆ̂
βT , the agent computes their value function and maximize it with respect

to consumption (ct) and education (et).

The individual agent and the econometrician face identical information and sequence of de-

cisions, with two crucial differences. First, while the econometrician observes the agent’s choice

of consumption and education, the econometrician observes the wage offer only if it is accepted.

Second, the econometrician has no direct observation about the preference parameters. In prin-

ciple, these parameters may be estimated. The current study is partially estimation partially

calibration, so that we assume particular values for the individual preference parameters and

estimate all the parameters associated with the underlying wage distributions.

3 The Data

The empirical analysis in this study is based on extracts from the March-CPS for the years

1964 through 2004. We use the data for the years 1964 through 1994 for estimation, and the

data from 1995 through 2004 for out-of-sample validation. To be consistent with the model

specification, we use data only on males between the ages of 14 and 65 who were either working

or in school. Since most of the relevant variables in the March-CPS refer to the year preceding

the sample year, the dates in this study are the actual years to which the questions referred.

Thus, for example, CPS year 1964 is referred to as 1963. We regard an individual to have been

in school in a particular year if at least one of the following conditions were true: (a) the reason

for not working was being at school; (b) the major activity last year was going to school; and/or

(c) the individual worked less than 13 weeks and in the remainder of the year was at school.

14



For individuals’ earnings we use the total earnings from wages and salaries. This variable, as

with all nominal variables, was deflated by the implicit price deflator for personal consumption

expenditure from gross domestic income.18

The basic statistics of the data we used in the estimation (i.e., 1964 trough 1994) are reported

in Table 1. This table suggests that, for at least the younger age groups, there exists cyclical

behavior in school enrollments. For the 19—24 years old, the group we are most interested in,

the percentage of respondents attending school exhibits distinct peaks in the years 1976, 1984

and 1992; a pattern which is similarly shared by the 14—18 age group. Also in the case of the

19—24 years old group, the minimum percentage of those attending school for the entire sample

occurs in 1980, 15.2%, while the maximum occurs in 1984, 20.7%, highlighting the fact that

the first half of the 1980s was a period of significant change in individuals’ behavior. Lastly,

notice the percentage of those attending school for all age groups never rises above 1% before

1981, and then after 1981 the percentage only drops below 1% in two of the 14 sample years.

Overall, this percentage has more than tripled from 1964 to 1994.

Two major problems hamper use of the pre-1976 March-CPS surveys. First, massive changes

in sampling frame, coverage and imputation methods were introduced in 1976. Second, some

of the most important variables for our analysis were only bracketed. To deal with the latter

problem we adopt the imputation method suggested in Buchinsky (1994). In this procedure the

bracketed variables are imputed using the frequencies in the CPS years 1976, 1977 and 1978,

conditional on race, age and education.19

The problems which stem from the changes in the sampling frame and coverage are harder

to deal with. Nevertheless, as shown in Juhn, Murphy and Pierce (1993), these changes affect

mainly the top and bottom ten percent of the wage distribution; which remains true after

controlling for education and experience. Since the method employed here is quantile regression,

the results from Juhn, Murphy and Pierce (1993) suggest the above changes are not likely to

introduce any systematic bias to our analysis. Indeed, as is shown below we do not observe any

discrete jump in the extreme quantiles (.10 and .90) relative to the return at the median.

4 The Conditional Wage Distribution

In this section we elaborate on the estimation of the quantile estimates, β̂1, · · · , β̂t, for the years
1964 through 1994 and discuss the main features of the results. Using the March-CPS data our

estimates are based only on the sub-population of people who choose to work in any given year.

To overcome this sample selection problem we resort to the method proposed by Buchinsky and

Hahn (1998), in which each individual has a threshold wage offer below which the individual will

prefer to acquire an additional year of education, and above which the individual will choose to

18This deflator is taken from The Economic Report of the President, 2005.
19For example, the number of weeks worked by an individual is imputed, conditional on their sex-race-age-

education composition, so that the distribution of weeks worked will match the average frequency for 1976
through 1978. A detailed description of the imputation method is provided in an appendix in Buchinsky (1994).
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work. Furthermore, as is the case here, the threshold wage is an unknown function of a known

set of regressors given by ϕ (z∗t ). The vector z
∗
t includes all the variable included in the wage

equation, as well as several variables that are excluded from the wage equation: individual and

family non-earned income, marital status dummy variable, and a dummy variable for children.20

The probability of being censored, π (z∗t ) in Buchinsky and Hahn’s notation, is estimated by

the Nadaraya-Watson kernel with a normal kernel function and a least-squares cross-validated

bandwidth. For the quantile regressions themselves only a subset of those variables are included:

education, education squared, experience, experience squared, an interaction term between

experience and education, race dummy variable and race dummy variable interacted with both

education and experience.

Table 2 presents some representative results for the returns to education for mid-career

(15 years of experience) white males. The returns to education are simply the derivatives of

the conditional quantiles with respect to education when evaluated at the level of education

denoted in the table. Figure 1 presents the returns to education for two education groups of

white males at the five quantiles. Table 2 and Figure 1 present only a small fraction of the

results. Nevertheless, they reveal the most common features. They clearly demonstrate the

enormous changes in the returns to education over the years at all five quantiles as well as some

noticeable differences across the various quantiles.

Several results stand out. After general decreases in the returns to education through most

of the 1970s, there was a sharp and unprecedented increase during most of the 1980s, at all

quantiles. The increase, however, was not uniform, in absolute terms, for all quantiles. Greater

increases at lower quantiles led to the returns at the various quantiles to converge for most

groups. Furthermore, in the early 1970s the returns for the less educated groups tend to be

higher at the lower quantiles, while the order reverses itself for the more educated. Similarly

dramatic changes are also apparent for the returns to experience.

In the simulations below, we pay attention to the model’s predictions, under various fore-

casting rules and parameter values, for accumulated education of particular cohorts, and to the

fraction of individuals in these cohorts in school at any particular time, among other things.21

Based on the CPS, we show the actual time path of average accumulated education in Figure 2a,

and the fraction in school over time in Figure 2b. These are intended only to be rough guides

to help in evaluating the simulations. The main features of these figures will be discussed in

20Non-earned income includes all sources of income other than work related transfers or direct income from
wages and salaries. The dummy variable for race takes the value 1 if the individual is non-white, and 0 otherwise.
The dummy variable for metropolitan area takes the value 1 if an individual lives in the CPS standard statistical
metropolitan area, and 0 otherwise. Education is defined as the number of completed years of schooling. Potential
labor experience is defined as: min(age−education−6, age−18). The division dummy variables are for the CPS
divisions: New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South
Central, West South Central, Mountain, and Pacific. Each of these variables takes the value 1 if an individual
lives in that division, and 0 otherwise. The marital status dummy variable takes the value 1 if an individual is
married, and 0 otherwise. The children dummy variable take the value 1 if an individual has children, and 0
otherwise.
21The cohorts are defined as individuals who graduated from high school in 1979, 1984 and 1989.
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relation to the simulations below.

5 Model Computation and Policy Simulations

The numerical computation of the value function in any period t is via backward recursion

based upon the observed information up to period t. From the Gibbs sampling algorithm the

agent obtains multiple forecasts, each of which is applied in every backward recursion. The

eventual value function for period t is the average over the sample of all possible forecasts.

More formally, the computational version of the Bellman equation is

V (zt, t) = max
ct,et

⎧⎨⎩u(ct) +
δ

5R

RX
i=1

5X
j=1

V
³
·, wp

j (
ˆ̂
βi,t+1), t+ 1

´⎫⎬⎭ ,

with ˆ̂βi,t+1 = ai+Ai(ai+Ai
ˆ̂
βi,t−1), where (

ˆ̂
βi,t−1, ai, Ai) is the ith draw from the Gibbs sampler,

and R is the number of draws from the Gibbs sampler.

The time horizon for the agent is always 40 years (i.e., T = 40). However, we vary the

starting date (t = 1) to correspond with the calendar years 1980, 1985, and 1990. For all

cohorts, we utilize historical data from 1964, so, for example, when the model is started in 1980

the individual has 16 years of previous observations upon which to compute his forecasts in

the very first year. Similarly, for the 1985 and 1990 cohorts there are 16 and 21 years of data,

respectively. For validation purposes we use data only for the years 1964 through 1994, and

compare the predictions of the model with those of the real data, namely the data from the CPS

of 1995 through 2004. For computational purposes we allow individuals to obtain education

only in the first 20 years after completion of their high school education. In reality, very few,

if at all, obtain education after the age of 38, which is our implicit limit. For the last 20 years

of the individual’s horizon consumption is the sole choice variable. We verified and found, by

employing an unconstrained model, that this constraint bares virtually no consequence on the

results obtained.

We already discussed the assumption about the evolution of β̂tfrom the point of view of the

agent. Of the remaining state variables, education and experience are discrete, while wealth

and wages are continuous. The latter two are discretized with linear interpolations used to

compute the value function at any point in the state space. We allow for nine possible levels

of education, 12 through 20 years (i.e., S = 20), 40 levels of experience, one for each year of

the time horizon. Wealth and wages are discretized into 30 and 45 points, respectively. This

gives rise to 12,150 elements in the state space. For all these points we compute the exact

value function. For all points that do not fall exactly on the grid described above we use linear

interpolation to compute the value functions at these points.

The individual’ s utility function is assumed to be of the constant relative risk aversion
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(CRRA) form:

u(c) =
c1−α

1− α
,

where α > 0. There are two ways to interpret the parameter αin this specification. First, αis

the coefficient of relative risk aversion (i.e., α = −(u00(c) · c)/u0(c)), where the greater is αthe
more risk averse the individual. Second, it is straightforward to show that the intertemporal

elasticity of substitution of consumption is η = 1/α. In this context, more curvature in the

utility function (i.e., larger α) implies that the individual would like to smooth consumption

more over time relative to a person with smaller α.

The parameters of the current computational model are the rate of interest, r, the individ-

ual’s discount factor, δ, the CRRA parameter, α, and the calendar year in which the model

begins. For given values of these parameters we compute the sequence of policy functions which

are then used for simulating the behavior of an individual over their life-cycle from some speci-

fied initial state. In performing the simulations the individual receives wage draws based upon

the estimated and forecasted β’s described above. For α we use values that lie between 0.2 and

2.0. These values are consistent with the prior literature (see the survey of prior research by

Bliss and Panigirtzoglou, 2003).

For all of the results shown in the current version of this study it is assumed r = 0.07 and

δ = 0.95, while the remaining parameters are varied, and stated in each figure and table below.

The reason we chose the discount rate to be δ = .95 is because this is the parameter that is

typically obtained when estimation takes place. Furthermore, this is the value that has been

used by virtually all studies in the literature in which δis not estimated. Of course, the results

might be sensitive to the choice of δ, but it is also well-known that this parameter is very hard

to pin down.

The interest rate was chosen to be r = 0.07 based on the average secondary market interest

rate for one-year Treasury Bill. Over the period from 1964 to 1994 the interest fluctuated

enormously from a low rate of about 2% to over 14%. The average for the whole period was

about 7%. The large variation in interest rate may suggest that one should include the interest

rate as a stochastic term in the state vector. However, it is not feasible to incorporate because it

would complicate the computation significantly. Also, the examination of the effect of interest

rate on educational choice is certainly beyond the scope of this paper.

In addition to using the VAR model with Gibbs sampling (VAR-Gibbs) to integrate over the

distribution of future wage forecasts, we consider three other, simpler, forecasting behaviors: No

foresight (NF), perfect foresight (PF) and the VAR forecast without Gibbs sampling (VAR). In

the NF case, the individual uses the most recent wage distribution as his forecast for all future

wage distributions (as if wages are a random walk). In the PF case the agents uses actual future

wage distributions for his forecasts.

A limitation in both cases arises from the fact that the planning horizon, and also the

periods in which the individual is choosing education and consumption, extends beyond our
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March-CPS sample. Consequently, whenever the time period in the model corresponds to a

year after 1994, we assume the March-CPS data equals the prediction from the VAR-Gibbs

methods. That is, we take the mean of the posterior distribution for the parameter vector and

forecast future conditional distributions of wage based on that set of values. Two important

facts are worth noting in this context. First, the PF forecast is not the same as that of any of

the other forecasts, and specifically not as the VAR forecast. This is obviously true for years

up to 1994, but it is also true for years after 1994. We conducted some sensitivity analyses in

which we used the available data from the March-CPS for more recent years, i.e., 1995 through

2004. We find that the changes in the results from doing so are trivial and they do not alter our

general conclusions. The most important reason for this fact is that most of the educational

decisions are made early in life and with a discount rate of δ = .95the future is discounted

heavily. In any event, the alternative forecasting methods lead to important comparisons in

our results.

5.1 Optimal Policies–Choice of Education

In this subsection we examine the effect of the various factors on schooling choices in the first

year after high school graduation. Figure 3 depicts the optimal choice of education, under

various forecasting models, in the first year after high school, with the CRRA parameter of

α = 1.2. The figure depicts the optimal education choices–enroll in the first year of college or

not–for every wage-wealth combination, given the information available at the time. All the

wage-wealth combinations below the graphs represent the states in which an individual chooses

to attend college, while all wage-wealth combinations above the graphs correspond to states

where the individual would choose to work.

In Figure 3a we show the results for those who graduated from high school in 1980 under

the four alternative forecasting rules outlined above. Figure 3b does the same for those who

graduated from high school in 1985. A few important results are apparent from these graphs.

First, if high school graduates in 1980 had perfect foresight of the sharp increase in the return

to education, then, relative to the NF case, approximately a 10% higher wage offer would have

been necessary to attract them into the workforce at that time. Moreover, a larger fraction

of the new high school graduates would have decided to attend college in 1985 than in 1980,

because they are to enjoy longer period with higher wages over their life-cycle.

Under the VAR forecasting method, there are fewer states of nature for which attending

college is an optimal decision than under the NF case. Moreover, when parameter uncertainty is

taken into account, namely under the VAR-Gibbs forecasting, then educational choice is optimal

in even fewer states than under the VAR model. This suggests that parameter uncertainty may

introduce relatively more uncertainty with respect to education, than it does with respect to

labor market experience. We discuss this issue in more detail below.

The prediction of the naive NF model is neither consistently below or above the predictions

obtained for the VAR or VAR-Gibbs models. Comparing Figures 3a and 3b reveals that the

19



NF model generally over predicts the fraction of people attending college in good times when

the implied return to education seems high (1985), while under predicting college attendance

in relatively bad times (1980).

Figure 3c presents the results for the VAR-Gibbs model for the three starting years 1980,

1985 and 1990 with the CRRA parameter of α = 1.2. This is our leading example throughout

the remainder of this section. Clearly, there are many more wage-wealth combinations in which

college choice is optimal in 1985 than in 1980, and even more so in 1990. This represents the

general right shift in the conditional wage distributions, throughout the 1980’s, particularly the

vast increases in the return to education and in the return to experience for the more highly

educated individuals.

Note that in all the graphs depicted in Figure 3 it is optimal for a larger fraction of the

wealthier individuals to attend school. In the model considered here this is merely due to

the fact that individuals are faced with liquidity constraints, since borrowing is not allowed.

In reality there are other factors that are associated with wealthier individuals getting more

education, but we abstract from these aspects in this study.

5.2 Simulation Results

The above discussion regarding optimal decisions was limited to behavior in the first period

for an individual with 12 years of schooling and no work experience. However, there are other

interesting issues concerning behavior in later periods, especially because one might change his

decision in light of new information in subsequent years.

Using the sequence of policy functions computed for each possible state of nature, we simu-

late 10,000 individuals through the first 20 years of their post high school careers. The results

reported below are for various combinations of forecasting methods, initial endowments, level

of risk aversion (or alternatively the intertemporal substitution), and year of high school grad-

uation. However, most of the attention is given to the first two aspects, as they have attracted

very little attention in the literature. The wage offer the individual receives in each period is

a random draw from the estimated distribution for that period, conditional on their attained

levels of education and experience.22

Since all individuals are high school graduates in the first period, in all simulations reported

here the initial state vector includes 12 years of education and zero experience. In the first set

of simulations we let each individual have initial wealth of $10,000.23 We consider three key

starting years, namely 1980, 1985 and 1990–1980 is the year right before the sharp increase

in the returns to education, 1985 is the year by which the sharpest increase was achieved, and

22While incorporating the fact that wages are correlated over time is of great importance, the issues of wage
mobility and its affect on educational choices are beyond the scope of this study. Nevertheless, we also analyze
below some aspects of state dependence in wages.
23There is huge variation of estimates of initial endowment for young adults in the U.S. Most estimates for

mean initial endowment are around $6,000 in 1980 dollars. We use data from the National Longitudinal Survey
of Youth (NLSY) to govern our calibration following Zagorsky (1997, 1999).
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1990 is the year by which the increase in the returns to education leveled off.

The results from the primary simulations are presented in Figures 4 to 9, and in each case

there are 20 periods marked along the horizontal axis. These 20 periods correspond to different

calendar years depending on the starting date of the model.24

Figure 4 depicts the fraction of people attending school for the three cohort groups and for

each of the four forecasting methods discussed above. The results clearly indicate that for the

first few years, the fraction of people from the 1980 cohort who attend college is much lower,

as one might expect, than for the 1985 and 1990 cohorts. As expected, smaller differences are

observed for the individuals with perfect foresight. Restricting attention to Figures 4c and 4d,

we see that this trend changes when the 1980 cohort is 10 years out, as some individuals return

to school in response to the sharp increase in the return to education. It is further apparent that

when parameter uncertainty is taken into account (Figure 4d), a lower fraction attends school

at any given period, due to the apparently greater uncertainty (i.e., parameter uncertainty)

associated with education relative to that associated with experience. Note that both the VAR

and VAR-Gibbs versions of the model do capture the fact that the 1980 cohort begin with a

noticeable lower fraction attending school.

The cumulative effect of school attendance is shown in Figure 5, which depicts the average

level of accumulated education (over the first 20 years of the individual horizon after graduating

from high school). Clearly, the alternative forecasting methods lead to vastly different predicted

behavior. For example, the perfect foresight method (Figure 5b), yields hardly any difference

among the three cohorts. With perfect foresight and no cost to education, beyond foregone

earnings, all cohorts accumulate virtually the same amount of education. In contrast, under

the other three alternatives there are much larger differences in the average level of accumulated

human capital among the three cohorts. Note that even though some of the individuals from

the 1980 cohort return back to school, on average, they never “catch up” with the individuals

from the 1985 and 1990 cohorts who made the college enrollment decision at periods when

education seemed to be a lot more attractive. This is true, even though the only cost of

education introduced so far is the foregone wage, because the later cohorts get to benefit from

the rising returns to education over a longer period of time.

The differences in predicted behavior depending on the forecasting method is also intuitive.

Under the NF method (Figure 5a) individuals obtain, on average, the highest level of education

relative to all other methods. This is because under the NF method (given the data over the

sample period) the individual systematically over estimates the returns to education in future

years. The average level of education decreases significantly under the VAR method (Figure 5c)

by almost one full year, by the 20th period. And, when parameter uncertainty is accounted for

(Figure 5d), the average level of education declines by an additional half a year.

The main goal of the paper is not estimation, but is rather focused on examining the

24Specifically, the year marked as 2 for example is 1981 for the cohort whose starting year is 1980, while for
the cohort starting in 1985 the year marked as 2 is 1986, and so forth.
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implications of alternative forecasting scenarios. Thus, issues regarding the in-sample and out-

of-sample fitness of the various models are not key here. Nevertheless, given our focus on

differential forecasting models it is of interest to assess which of the competing models best

explains changes across the cohorts over the sample period. One way of evaluating this is by

comparison of the Pearson χ2statistics for the models against the data. All models’ predictions

are quite accurate, which suggest that the key issue in modeling educational choices is the

forward looking aspect that exist in all models. Nevertheless, overall, the VAR-Gibbs model,

the most general model, which account for all sources of uncertainty, seems to perform the best,

both in terms of the within-sample as well as the out-of-sample predictions. For this reason we

use it as our leading model in presenting the remainder of the results in this paper.25

In Figure 6 we show the model’s prediction of the average annual wages for the three cohorts

over the first 20 years of their planning horizon. During the first few years after graduating from

high school, all cohorts earned similar wages under each of the various forecasting scenarios.

However, as time progressed the cohorts who had greater incentives to attend school started

realizing the returns on their investment. The patterns of changes in the wage profile reflect the

pattern of changes in college attendance depicted in Figure 4. Consequently, the average wage

in period 20 (for those who work) is significantly higher for the 1985 and 1990 cohorts than

for the 1980 cohort. While, as expected, there is very little difference in the pattern of changes

between the three cohorts for the perfect foresight case, there are significant differences for all

other cases. For example, in the VAR-Gibbs case average wages in the 20th period are lower

by approximately $2,000 (or over 7%) for the 1980 cohort relative to the 1985 cohort, and even

more so relative to the 1990 cohort.

As noted above, there is evidence in our simulations that the returns to education may

be more risky than the returns to experience, driven, at least partially, by relatively higher

parameter uncertainty. We explore this issue more carefully in Figure 7. Here we depict the

results when the parameter αis increased to α = 2.0 (from α = 1.2in Figures 3 to 6). The

changes in the results induced by an increase in the CRRA coefficient are qualitatively and

quantitatively striking. More risk averse individuals choose less education than the relatively

less risk averse people. For example, under the VAR-Gibbs model, less risk averse people

(α = 1.2) from the 1980 cohort accumulated, on average, close to 17 years of education by

the end of the 20-year horizon, compared with only 14.5 for the more risk averse (α = 2.0)

individuals from this cohort. Consequently, the more risk averse agents also obtain lower

average wages (figure is omitted). It is worth noting that some of the affect of the parameter α

can be interpreted as the effect of intertemporal substitution. That is, individuals with larger

αwould like to smooth consumption more than individuals with smaller α. Since we do not allow

for borrowing in our model, individuals with larger αprefer to join the labor market earlier, in

order to obtain wages, which, in turn, will allow them to smooth consumption more relatively

to those with smaller α.

25We omit the results for brevity. But, all tables with the results are available from the authors upon request.
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The inclusion of parameter uncertainty exacerbates the effect of α on educational invest-

ments, as shown in Figure 7b. With α = 1.2, the difference in accumulated education after

20 years under perfect foresight versus the VAR-Gibbs model is about one year. Meanwhile,

if α = 2.0 this difference is about 1.5 years. This implies that not only are the returns to

education relatively more uncertain given known distributions of future wages, but the uncer-

tainty inherent in forecasting future conditional wage distributions is greater for higher levels

of education.

It is important to note some caveats to these findings about the role of α. Our analysis

does not take into account involuntary unemployment. If the probability of involuntary un-

employment is higher among low education individuals (e.g. high school graduates) then it is

conceivable that educational investments may be associated with relatively less uncertainty.

Perhaps even more importantly, we have not incorporated unobserved individual heterogeneity

into this analysis (although we do explore this issue, below). For example, high ability individ-

uals may face less uncertainty in the expected returns to education than low ability individuals.

We have to be cautious, though, about the exact implications of our results. We have assumed

CRRA, and it is conceivable that alternative utility functions, or alternative approaches to

incorporating risk, may yield different conclusions.

Tables 3 and 4 provide a more complete summary of the full set of simulations. Table 3

reports the distribution of the accumulated education levels at the end of period 20 for the

10,000 simulated individuals, for a variety of scenarios with alternative forecasting methods,

starting years, and attitudes toward risk. Table 4 reports the distribution of the number of

years it took to complete the first four years of college, for the same alternative scenarios as in

Table 3.26

Consistent with the discussion above regarding risk aversion, Table 3 shows that the higher

the degree of CRRA the more skewed to the right is the distribution of completed years of

education. A significant number of individuals with relatively high α(i.e., α = 2.0) never

finish college, especially for the high school graduate cohort of 1980. Comparing the results for

cohorts with the same attitude toward risk across the various forecasting methods indicates the

importance of taking account of uncertainty, in general. For example, the VAR-Gibbs model

with α = 2.0 in 1985 (line 34) yield a distribution of completed years of education far more

skewed to the right than that implied by the VAR model (line 25). In fact, the VAR-Gibbs

model indicates that over 80% of the individuals of the 1980 cohort never completed four years

of college, while the VAR model predicts that less than 70% will never complete college. In

contrast, the PF model predicts that over 60% will complete four years of college. Again,

these results, when compared with known observed trends of college enrollment documented in

the literature, seem to indicate that individuals are highly risk averse, and are more likely to

behave in a fashion consistent with the VAR-Gibbs model, that is, take into account all sources

26The numbers in each row of Table 6 need not add up to 10,000, as some of the simulated individuals never
completed four years of college education.
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of uncertainty, including parameter uncertainty.

From a policy standpoint one would like to analyze not only the eventual educational at-

tainments, but also the amount of time needed to reach these attainments. Table 4 reports the

speed by which four years of college education were completed, for those who finished a four-

year program. The actual speed observed in the population, for any of the groups analyzed,

is undoubtedly shorter, but with less people actually completing college. This is mainly due

to the fact that tuition, and other observed and unobserved costs, are not integrated into the

results reported in Table 4.

Evidently, most of the individuals from the 1980 cohort completed their college education

in more than four years. For the other two cohorts, the speed is faster, yet there is a significant

number of individuals who required more than 7 years to complete college. While the pattern is

similar across the four alternative forecasting models, the magnitudes are somewhat different.

Under the VAR model more years are required to complete the first four years of education.

This is in sharp contrast to the PF case where individuals complete their education relatively

faster. Under the VAR-Gibbs model completion of the first four years takes substantially longer

than under any of the other scenarios. There are several reasons for the relatively long spell

until education is completed. First, there is no loss incurred by skipping school for a number

of years. Second, there is no borrowing in the current model, so that an individual may have

to leave school in order to accumulate enough wealth in order to survive.

6 Implications of Other Factors

The framework proposed in this paper is well suited for examining other important aspects

affecting educational decisions. In this section we briefly examine several of these issues.

Tuition Costs:

We can use our model to analyze the impact of liquidity constraints (or the availability of

funding from government or family) and tuition costs on educational choices, both of which are

important policy issues. To do so, we utilize data on resident undergraduate tuition and/or re-

quired fees from a nationwide sample of colleges and state universities for the years 1972 through

1994, collected by the State of Washington Higher Education Coordinating Board.27Figure 8

provides the historical data from 1972 to 1992. We see that the pattern of changes in the

resident tuition is very similar to that of non-resident tuition, but the latter is much higher at

all years. For the analysis here we use the resident tuition. To examine the effect of liquidity

constraints on the accumulation of human capital we solve the model varying the levels of initial

wealth at the time the individuals finish high school, namely $5,000, $20,000, and $50,000.28

27We thank Tom Kane for making this data available to us. Kane analyzes these data extensively in
Kane (1995).
28These values correspond to estimates provided by the National Center for Education Statistics for the low,

medium, and high level of funding for freshmen in four-year public universities.
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Figure 9 depicts the results for accumulated education when tuition costs are added to the

analysis. Comparing Figure 9 with Figure 5d clearly illustrates the impact of tuition costs over

the 20-year horizon. With no tuition costs an individual from the 1980 cohort accumulates

almost a full year of education more than an individual from that cohort who is faced with

tuition costs. Similar, but not as strong affects are also observed for the other two cohorts.

Consequently, tuition costs cause average annual wages to drop for all cohorts (figure is omitted).

This also suggests that the rising tuition cost along with the higher uncertainty in the reward

of education relative to that of accumulated experience is a major reason for individuals not to

attend colleges even in face of the rising return to education.

Table 5 describes the distribution of education levels when tuition cost is incorporated,

under the VAR-Gibbs forecasting model. The table indicates that there is a significant left

shift of the education distribution. For example, without tuition costs approximately 90% of

the 1985 cohort completed four years of college; but with tuition this fraction falls below 75%.

The results also indicate that tuition costs lengthened the time until completion of a four-

year college program. Although not shown in the table, these results apply for all forecasting

methods, although it takes more time to complete four years of college education under the

method that incorporates all sources of uncertainty–the VAR-Gibbs method.

Next we examine the effect of liquidity constraints on the accumulation of human capital.

The key results for the VAR-Gibbs model, with α = 1.2, are depicted in Figure 10. As ex-

pected, individuals with larger initial wealth accumulate dramatically more education. The

effect on wages is equally dramatic (not reported). Furthermore, while average wages for the

richer individuals are similar to the wages of poor individuals in the early periods, the wage

dispersion between rich and poor individuals gets larger as time progresses. This is a direct

consequence of the fact that richer individuals benefit from their earlier higher investment in

human capital. This seems to suggest that differences in educational achievements stem to

large extent because of liquidity constraints. Poorer individuals would benefit from accumulat-

ing more human capital, but they simply cannot afford to have the same level of investment as

the reacher individuals.

This is clearly demonstrated in Table 6, which provides the distribution of education levels

for a larger set of simulations based on alternative initial wealth levels. The table illustrates

that the groups with higher levels of initial wealth achieve higher levels of education. We also

find (table is omitted for brevity) that these levels of education are achieved in a shorter time.

For example, most of the individuals from the 1980 cohort who started with initial wealth of

$50,000 complete more than four years of college education. But more importantly, a relatively

large fraction did so in less than five years. In contrast, a large fraction of the poor individuals

from the 1980 cohort never completed four years of education, and for those who did it takes a

significantly longer time.

Unobserved Heterogeneity:
We now examine the role of unobserved heterogeneity. To do that we employ in the simula-
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tions three alternative types of individuals that differ from each other by the distribution from

which they draw their wages. That is, the support of the distribution is the same as before,

only that we assign the three groups different probability distributions. As noted above we use

the VAR-Gibbs method and employ the CRRA parameter α = 1.2.

As in all previous simulations the wage offers were randomly drawn from the estimated

conditional distribution for that period, conditional on education and experience. That is, the

probability of each conditional quantile was .2. Here we change these probabilities, assigning

the following vectors of probabilities, at the .10, .30, .50, .70, and .90 quantiles for the three

types of individuals considered:

Type I: (.2, .4, .2, .2, 0) ;

Type II: (.1, .2, .4, .2, .1) ; and

Type III: (0, .2, .2, .4, .2) .

In this setup Type I will tend to systematically get unfavorable wage draws relative to all other

types, regardless of whether or not they completed college education. Type II has symmetric

distribution, but relative to our base case will tend to get wage draws closer to the center of

the conditional distributions. Finally Type III tend to systematically get favorable wage draws

relative to all other types.

Figure 11a provides several important results of these set of simulations. First, we observe

that the least favorable individuals (Type I) obtain on average more education than the other

two groups, even though they also get less favorable wage draws after completing higher educa-

tion. This is mainly because the only costs of education in these sets of simulations is forgone

wage and it is relatively low for this group of individuals. In contrast, Type III individuals

get the lowest education; by over one year relative to Type I individuals. Also, for Type II

individuals even though they have a symmetric wage distribution, just like in the base case,

they tend to get on average lower education. This is because individuals of that type have

higher probability of drawing high enough wage offers that draw them to work rather than

obtain additional education. Also, the individuals are risk averse, so distribution with smaller

variance are preferred. Consequently, they obtain lower education relative to Type I individu-

als, but much more than Type III. In any case, the introduction of relatively simple unobserved

heterogeneity can also play a major role in one’s educational choices, and consequently in wage

outcomes (figure is omitted).

While we do not explain here why it is that different individuals have different probability

distributions, the literature of the U.S. wage structure has given ample examples that will lead

to such a situation, the most important one being differences in inherent ability. Nevertheless,

the results clearly show that while unobserved heterogeneity can play a major role, the overall

pattern of changes observed in our simulations is very similar to that of the base case. In

other words, unobserved heterogeneity can certainly explain variation in outcomes, but the
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randomness in the model produces significant amount of ex-post observed heterogeneity, even

though all individuals start with the very same endowment under the base case.

State Dependence:

Finally, we consider the possible effects of having state dependence in wages, that is, having

correlated wages over time. To do so we use two different transition matrices for high school

graduates and college graduates. These are given, respectively, by29

TRHS =

⎛⎜⎜⎜⎜⎜⎜⎝
.2 .4 .2 .1 .1

.15 .2 .4 .15 .1

.45 .25 .15 .1 .05

.15 .1 .5 .15 .1

.05 .05 .1 .15 .65

⎞⎟⎟⎟⎟⎟⎟⎠ and TRCOL =

⎛⎜⎜⎜⎜⎜⎜⎝
.65 .15 .1 .05 .05

.15 .55 .15 .1 .05

.1 .15 .55 .1 .1

.05 .1 .1 .65 .1

.05 .05 .1 .10 .7

⎞⎟⎟⎟⎟⎟⎟⎠ , (14)

where the rows are the quantiles at time t, while the columns are the quantiles at time t+1. For

all the other parameters we use those in the base case, namely the VAR-Gibbs method. Note,

there is a high degree of stability in wages for college graduates (i.e., the transition probabilities

on the diagonal of TRHS are quite large). In contrast, for high school graduates the transition

probabilities in TRHS indicate that there is a lot more mobility across the distribution than

for college graduates.

The results for these set of simulations are given in Figure 11b and in Table 7. Interestingly,

serial dependence in wages need not lead to higher education, even when the serial correlation

in wage for graduate students is stronger than that for high school graduates. In fact, serial

dependence in wages leads to average accumulated education that is almost two years lower

than that under the base case. Consequently, average wages are lower (figure is omitted), as

are the consumption and wealth levels (not shown).

From the transition matrices given in (14), note that the probabilities for obtaining good

wage offers when individuals graduate from high school are quite high, especially relative to

the probabilities of getting low offers. Moreover, mobility of individuals through the wage dis-

tribution is relatively low at that stage of their career (i.e., there is significant serial correlation

in wages). In turn, individuals tend to get large enough wage offers that induce them to work,

and when they do so their wages tend to be positively serially correlated. This leads them to

stay in the labor market rather than attend school and acquire higher education. Needless to

say, incorporating the direct cost of education will lead to an even larger discrepancy between

the base case and the case considered here.

29These matrices are based on estimates obtained in Buchinsky and Hunt (1999).
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7 Conclusion

We have presented a dynamic model of individuals’ educational investments that allows us

to explore alternative modeling strategies for forecasting future wage distributions, which are

essential in any dynamic programing model. The forecasting procedures we explore are based

only on the information that would be available at the actual time these decisions were made.

Typically, studies the employ dynamic programing models assume some stationary distribution

for wages. Since the returns to education were dramatically rising during the period of our

analysis, such an approach has the feature that individuals systematically under-predict the

(future) returns to schooling for at least some periods when educational choices were being

made. In contrast, our approach provides a more plausible framework for studying educational

investments for which the returns will be realized for a very long time after the actual investment

is made.

An important innovation in this study is that we also incorporate the role of parameter

uncertainty into the decision making process. In other words, the risk-averse individual in our

framework not only takes into the account the uncertainty of future wage draws (conditional

on education and experience), but also the uncertainty in the distributions themselves, i.e.,

the uncertainty in the parameters of the (estimated) conditional wage distributions. This adds

to the plausibility of our forecasting model–any prediction of future unknown distributions

inherently involves uncertainty. We are unaware of prior research in the dynamic programming

literature that has included this feature.

Our analysis yields a number of findings. Firstly, the particular forecasting method of future

wage distributions has a major impact on predicted individual behavior. We find distinctive dif-

ferences across forecasting methods in the fraction of individuals that attend school in any given

year, the average level of accumulated education, and the time elapsed until a college degree

is completed. The most general model of forecasting we propose–the VAR-Gibbs model–

incorporates parameter uncertainty into the decision process. This model reveals interesting

time paths of educational choices. High school graduates in 1980 are less likely to attend college

than their 1985 counterparts. Moreover, the 1980 cohort never catch-up by returning to school

later in their careers in order to benefit from the rising returns to education. Similarly, the 1990

high school graduates attain higher levels of education than the 1985 cohort. These predictions

are also evident in the data, providing basic verification of the limited ability of individuals in

the early 1980s to foresee the dramatic increases in the returns to education.

Secondly, the impact of the observed (and previously documented) increase in returns to

education after 1980 on educational investments is mitigated by two factors: (i) individuals’

inability to foresee these changes based on the information available at the time; and (ii) along

with the rising returns to education there has been an increase in the uncertainty associated

with education. That is, there is less variation in the forecast of wage distributions that is due

to experience than due to education. In our model an individual has to be engaged in either

schooling or in the labor market. Consequently, more risk averse individuals tend to invest less
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in education and more in on-the-job acquisition of experience. While this aspect is generally

ignored in the literature, we find it to be of first order importance. When we also include data

on tuition costs into the model, we find that the observed rising tuition costs are a significant

deterrent to educational investments during the period of our analysis.

Thirdly, our results suggest that appropriate subsidies can be instrumental in encouraging

individuals to accumulate more education. While this has been discussed previously in the

literature, our study highlights the potential impact of uncertainty on educational choices. Our

results indicate that there can be potential policies that would lead to increase in educational

attainment. One example of such a policy is for college graduates to repay tuition fees only if

their income exceeds some minimum pre-specified level.30 This would reduce the uncertainty

that is associated with obtaining higher education relative to that associated with obtaining

labor market experience.

Structural dynamic models of schooling, such as the one developed here, incorporate a host

of assumptions. Foresight of future wage distributions and unobserved individual heterogeneity

aside, there are other questionable assumptions that are rarely discussed, such as treating

education as homogeneous, and assuming that individuals’ unobservable ability is constant

over time. Several extensions to our current approach are in order. For example, one may allow

for borrowing at any point in time, in addition to analyzing the implications of changing the

individual’s level of initial wealth.

Overall, this study provides further verification of the usefulness of dynamic programming

methods for analyzing individuals’ educational choices. An important aspect of these kinds

of models is their ability to capture forward-looking behavior, which require some assumption

regarding the evolution of future wage distribution. The main point of this paper is that the

choice of the forecasting method to achieve this goal is not an innocuous assumption. We

therefore propose a general method of forecasting that is embedded in a dynamic optimization

framework, which relies upon plausible assumptions about what information is available at the

time of forecasting, and which accounts for sources of uncertainty faced by individuals that

have not been previously studied.

30This is, for example, the current policy in Australia.
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Appendix A: Evaluating the Posterior Distribution of (βt
h, Cβ,Σν,Σβ)

In this appendix we first specify the prior beliefs and then explain how to obtain the posterior joint
distribution for (βth, Cβ ,Σν ,Σβ | β̂th) using a Gibbs sampler. The posterior distribution is then used for
integrating over the true βt’s.

Prior Distribution for the Model’s Parameters:

Following the definition of βτ in Section 3, one can estimate the components of βτ =

(β.1,τ , β.3,τ , β.5,τ , β.7,τ , β.9,τ ) from five separate quantile regressions of earnings on the individual’s char-
acteristics for each of the sample years available at the time the individual makes his decision in period
t. We adopt a diffuse prior for βτ , for all τ = 0, . . . , t.

Conditional on the true values β0, . . . , βt, Cβ is simply given by

Cβ = (X
0
βXβ)

−1X 0
βYβ,

where

Y 0
β =

¡
β1 · · · βt

¢
, and X 0

β =

µ
1 · · · 1
β0 · · · βt−1

¶
.

We let cβ = vec(Cβ) have a diffuse prior.

The prior distribution employed for Σ−1, associated with t in (12), is a suitably diffuse prior given
by p

¡
Σ−1

¢
∝ |Σ |L/2, where L is the dimension of Σ .

Unlike the case for Σ−1, since we do not have a direct observation on βt, we cannot employ an im-
proper prior for Σ−1ν , because such a prior would result in an improper posterior distribution for Σν . We
therefore adopt a Wishart distribution as the prior distribution for Σ−1ν , that is, Σ−1ν ∼Wishart (1, IL),
where IL is an identity matrix of dimension L, the dimension of Σν .

Given the above specification our goal is to obtain the posterior distribution of (βth, Cβ ,Σν ,Σβ),
given the “data” β̂th; that is p(β

t
h, Cβ,Σν ,Σβ | β̂th). We do so using a Gibbs algorithm, drawing from

the conditional distribution of only a subset of the parameters at a time, conditioning on all other
parameters, as explained below.

The Gibbs Sampler:

In order to cycle through the various steps of the Gibbs sampler, one needs to choose starting points
for the model’s parameters. The natural starting values for Σ , Σν , and Cβ are their maximum likelihood
estimates. For βth we simply take β̂

t
h as the initial value. Given these initial starting values we cycle

through the following four steps of the Gibbs sampler:

Step 1:
Sample sequentially from the conditional distribution of βth given (β̂

t
h, Cβ,Σν ,Σ ). If we define βth,−τ

as βth, excluding βτ , and similarly for the other variables; then we first sample from the conditional
distribution of β1 given (β̂th, β

t
h,−1, Cβ ,Σν ,Σ ). For the VAR model outlined above and the assumed

prior distributions, this distribution is normal with mean and variance given, respectively, by

E
h
β1 | β̂th, βth,−1, Cβ,Σν ,Σ

i
=W11β̂1 +W21β

f
1 ; and

Var
³
β1 | β̂th, βth,−1, Cβ ,Σν ,Σ

´
=
¡
Σ−1 +

¡
A0Σ−1ν A

¢¢−1
,
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where

W11 =
¡
Σ−1 +

¡
A0Σ−1ν A

¢¢−1
Σ−1;

W21 =
¡
Σ−1 +

¡
A0Σ−1ν A

¢¢−1 ¡
A0Σ−1ν A

¢
; and

βf1 = A−1 (β2 − a) .

Now sequentially sample all other βτ for τ = 2, . . . , t − 1. The conditional distribution of βτ , given
(β̂τ , β̂

t
h,−τ , Cβ,Σν ,Σ ), is normal with mean and variance given, respectively, by

E
h
βτ | β̂th, β̂th,−τ , Cβ,Σν ,Σ

i
=W1τ β̂τ +W2τβ

f
τ +W3τβ

b
τ ; and

Var
³
βτ | β̂th, β̂th,−τ , Cβ ,Σν ,Σ

´
=
¡
Σ−1 +Σ−1ν +

¡
A0Σ−1ν A

¢¢−1
,

where

W1τ =
¡
Σ−1 +Σ−1ν +

¡
A0Σ−1ν A

¢¢−1
Σ−1;

W2τ =
¡
Σ−1 +Σ−1ν +

¡
A0Σ−1ν A

¢¢−1 ¡
A0Σ−1ν A

¢
;

W3τ =
¡
Σ−1 +Σ−1ν +

¡
A0Σ−1ν A

¢¢−1
Σ−1ν ;

βbτ = a+Aβτ−1, and

βfτ = A−1 (βτ+1 − a) .

Finally, sample from the conditional distribution of βt, given (β̂th, β
t
−t, Cβ,Σν ,Σ ). This distribution is

normal with mean and variance given, respectively by

E
h
βt | β̂th, βt−t, Cβ ,Σν ,Σ

i
=W1tβ̂t +W3tβ

b
t ; and

Var
³
βt | β̂th, βt−t, Cβ,Σν ,Σ

´
=
¡
Σ−1 +Σ−1ν

¢−1
,

where

W1t =
¡
Σ−1 +Σ−1ν

¢−1
Σ−1,

W3t =
¡
Σ−1 +Σ−1ν

¢−1
Σ−1ν , and

βbt = a+Aβt−1.

Step 2:

Sample from the conditional distribution of cβ, given (β̂th, β
t
h,Σ ,Σν). This conditional distribution

is normal with mean and variance given, respectively, by

E
h
cβ | β̂th, βth,Σν ,Σ

i
= vec

³¡
X 0
βXβ

¢−1
X 0
βYβ

´
; and

Var
³
cβ | β̂th, βth,Σν ,Σ

´
= Σν ⊗ (X 0

βXβ)
−1.

Step 3:

Sample from the conditional distribution of Σ−1, given (β̂th, β
t
h, Cβ,Σν). This conditional distribution

is Wishart:
Σ−1 | β̂th, βth, Cβ ,Σν ∼Wishart (Kβ , Vβ) ,
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where Kβ = t, and

V −1β =
tX

t=1

³
βt − β̂t

´³
βt − β̂t

´0
.

Step 4: Sample from the conditional distribution of Σ−1ν , given (β̂th, β
t
h, Cβ ,Σ ). This conditional

distribution is Wishart:
Σ−1ν | β̂th, βth, Cβ,Σ ∼Wishart (Kν , Vν) ,

where Kν = T + 1, and
V −1ν = IL + (E

0E)−1, and E = Yβ −XβCβ .

Cycling through these four steps of the Gibbs sampler will eventually lead to draws that can be
considered as coming from the posterior distribution of (βt, Cβ ,Σ

−1
ν ,Σ−1), given β̂th.
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Table 1: Composition of the March-CPS Extract

Age Group
Year All 14-18 19-24 25+

Total % in Total % in Total % in Total % in
School School School School

1964 17,599 15.6 2,646 88.1 1,898 19.9 13,055 0.3
1968 39,901 14.3 5,907 79.7 4,624 19.5 29,370 0.3
1975 35,759 14.1 5,350 75.8 5,336 15.4 25,073 0.6
1979 44,095 14.4 6,534 76.6 7,038 15.5 30,523 0.9
1980 52,285 14.2 7,674 75.8 8,421 15.2 36,190 0.9
1981 51,621 14.3 7,264 78.9 8,125 15.9 36,232 1.0
1984 44,536 15.3 5,840 85.6 6,659 20.7 32,037 1.4
1987 43,663 13.5 5,437 83.2 5,933 17.6 32,293 1.1
1990 44,029 9.7 3,925 76.0 5,883 16.6 34,221 0.9
1992 42,848 10.8 3,880 81.8 5,542 19.7 33,426 1.1
1994 39,698 10.1 3,386 82.6 4,868 18.9 31,444 1.0

Note: For definition of “in school” individuals see the text.

Table 2: Return to Eductaion for Mid-Career White Males

Year Whites Non-Whites
.10 .25 .50 .75 .90 .10 .25 .50 .75 .90

High School Graduates College Graduates
1964 9.42 9.32 8.50 8.04 7.91 2.38 5.44 6.74 8.07 9.76

(2.73) (0.79) (0.33) (0.12) (0.18) (3.30) (0.93) (0.39) (0.12) (0.26)
1968 10.67 10.76 9.53 8.87 9.02 7.71 8.88 9.31 10.16 12.45

(0.71) (0.37) (0.12) (0.04) (0.31) (0.83) (0.42) (0.13) (0.06) (0.42)
1973 10.48 10.43 9.70 9.06 9.00 8.31 9.14 9.58 10.54 12.78

(0.73) (0.32) (0.15) (0.06) (0.40) (0.84) (0.36) (0.15) (0.09) (0.53)
1976 9.98 10.88 10.02 9.37 9.29 8.50 9.39 9.22 9.99 11.77

(0.57) (0.34) (0.19) (0.04) (0.23) (0.64) (0.39) (0.21) (0.03) (0.33)
1979 9.28 10.27 9.55 9.01 8.67 7.64 8.75 8.28 8.80 10.40

(0.60) (0.29) (0.25) (0.12) (0.11) (0.69) (0.33) (0.29) (0.13) (0.16)
1981 8.71 9.75 9.33 8.99 8.50 7.62 8.35 8.16 9.18 8.87

(0.41) (0.29) (0.19) (0.07) (0.06) (0.45) (0.32) (0.22) (0.07) (0.05)
1985 9.63 11.03 10.80 10.45 9.66 11.18 10.88 10.77 11.14 12.68

(0.12) (0.22) (0.14) (0.06) (0.26) (0.18) (0.23) (0.14) (0.05) (0.36)
1988 9.95 11.70 11.54 11.34 10.77 10.97 11.25 11.22 11.70 14.10

(0.13) (0.25) (0.18) (0.11) (0.27) (0.12) (0.26) (0.19) (0.10) (0.37)
1992 10.36 11.96 12.08 11.79 11.17 11.61 12.19 12.54 12.64 12.09

(0.13) (0.15) (0.10) (0.05) (0.07) (0.14) (0.15) (0.09) (0.05) (0.06)
1994 11.55 13.25 13.33 13.47 13.16 13.22 15.40 15.49 16.22 15.85

(0.15) (0.13) (0.10) (0.14) (0.16) (0.21) (0.20) (0.15) (0.21) (0.24)

Note: All returns to education are expressed in percentage.
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Table 3: Simulated Distributions of Education Accumulation (after 20 years)
with $10,000 Initial Wealth

Years of Education
Cohort α 12 13 14 15 16 17 18 19 20

No Foresight
1. 1980 0.8 0 0 0 0 13 378 2,885 5,324 1,400
2. 1985 0.8 0 0 0 0 0 24 925 5,275 3,776
3. 1990 0.8 0 0 0 0 0 3 421 4,013 5,563
4. 1980 1.2 0 1 7 165 1,173 4,111 3,583 921 39
5. 1985 1.2 0 0 0 20 252 1,831 4,540 3,041 316
6. 1990 1.2 0 0 0 6 73 805 3,426 4,488 1,202
7. 1980 2.0 109 633 2,066 3,913 2,431 779 66 3 0
8. 1985 2.0 6 151 770 2,473 3,281 2,587 671 61 0
9. 1990 2.0 0 41 284 1,381 2,837 3,421 1,686 338 12

Perfect Foresight
10. 1980 0.8 0 0 0 0 1 204 2,285 4,064 3,446
11. 1985 0.8 0 0 0 0 8 241 2,306 4,081 3,364
12. 1990 0.8 0 0 0 0 21 348 2,655 3,863 3,113
13. 1980 1.2 0 0 0 14 296 2,706 4,726 1,912 346
14. 1985 1.2 0 0 0 13 305 2,794 4,509 1,939 440
15. 1990 1.2 0 0 0 22 452 2,991 4,222 1,835 478
16. 1980 2.0 0 63 579 2,042 3,577 2,966 704 68 1
17. 1985 2.0 0 50 555 1,973 3,370 3,131 830 87 4
18. 1990 2.0 0 56 637 2,086 3,281 2,958 878 98 6

VAR Model
19. 1980 0.8 0 0 0 1 73 1,314 4,557 3,133 922
20. 1985 0.8 0 0 0 0 20 500 3,179 3,973 2,328
21. 1990 0.8 0 0 0 0 28 420 2,967 3,792 2,793
22. 1980 1.2 0 1 37 438 2,170 4,686 2,314 337 17
23. 1985 1.2 0 0 2 92 895 4,078 3,777 1,028 128
24. 1990 1.2 0 0 3 50 652 3,376 4,073 1,499 347
25. 1980 2.0 54 652 2,395 3,771 2,303 747 77 1 0
26. 1985 2.0 9 299 1,451 3,139 3,037 1,774 281 10 0
27. 1990 2.0 1 100 816 2,393 3,307 2,631 687 61 4

VAR-Gibbs Model
28. 1980 0.8 0 0 1 168 1,561 4,351 3,356 563 0
29. 1985 0.8 0 0 0 1 45 779 3,548 4,315 1,312
30. 1990 0.8 0 0 0 0 58 828 3,669 4,256 1,189
31. 1980 1.2 0 1 66 752 3,001 4,026 1,844 304 6
32. 1985 1.2 0 0 15 276 1,772 4,009 3,101 784 43
33. 1990 1.2 0 0 7 208 1,466 3,874 3,266 1,091 88
34. 1980 2.0 181 1169 3,117 3,538 1,641 321 33 0 0
35. 1985 2.0 49 542 2,061 3,770 2,581 870 119 8 0
36. 1990 2.0 14 374 1,856 3,699 2,826 1,022 198 11 0
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Table 4: Speed of Education Accumulation for High School Graduates,
with $10,000 Initial Wealth

Years to Completion of College
Cohort α ≤ 5 6 7 8 9 10 11 12 13 14 15 16+

No Foresight
1. 1980 0.8 18 176 795 1,542 1,716 1,823 1,553 1,179 621 367 132 78
2. 1985 0.8 88 1,077 2,375 2,232 2,255 1,185 453 226 80 22 6 1
3. 1990 0.8 367 2,465 3,202 2,270 1,128 395 126 31 11 5 0 0
4. 1980 1.2 0 0 13 106 265 580 818 1,335 1,162 1,444 1,315 2,790
5. 1985 1.2 0 7 120 419 1,207 1,650 1,781 1,666 1,221 813 495 601
6. 1990 1.2 0 82 605 1,401 1,981 1,961 1,577 1,054 618 343 189 183
7. 1980 2.0 0 0 0 0 0 4 13 31 43 111 207 2,870
8. 1985 2.0 0 0 0 2 21 71 153 273 442 610 779 5,249
9. 1990 2.0 0 0 2 31 94 260 420 663 785 898 1,091 3,050

Perfect Foresight
10. 1980 0.8 280 1,667 2,650 2,388 1,501 800 372 225 68 28 14 7
11. 1985 0.8 208 1,728 3,084 2,374 1,404 683 302 119 59 25 7 7
12. 1990 0.8 465 1,916 2,756 2,279 1,362 683 302 134 58 28 12 5
13. 1980 1.2 0 69 445 1,144 1,522 1,666 1,509 1,598 896 514 320 303
14. 1985 1.2 0 130 801 1,352 1,849 1,863 1,324 1,009 742 411 241 265
15. 1990 1.2 18 112 685 1,335 1,667 1,720 1,425 1,095 750 443 297 431
16. 1980 2.0 0 0 2 22 50 176 271 677 754 814 948 3,602
17. 1985 2.0 0 0 10 54 159 317 360 575 688 792 896 3,571
18. 1990 2.0 0 0 3 36 91 218 321 471 588 690 744 4,059

VAR Model
19. 1980 0.8 18 175 741 1,491 1,640 1,884 1,726 1,157 587 311 156 113
20. 1985 0.8 88 1,028 2,379 2,196 2,037 1,199 576 280 127 47 29 14
21. 1990 0.8 120 1,574 2,619 2,471 1,661 842 389 185 84 35 15 5
22. 1980 1.2 0 0 7 75 153 520 794 1,307 1,081 1,267 1,262 3,058
23. 1985 1.2 0 7 161 468 951 1,421 1,402 1,465 1,302 936 743 1,050
24. 1990 1.2 0 43 399 943 1,406 1,636 1,522 1,287 937 606 449 719
25. 1980 2.0 0 0 0 0 4 11 28 72 74 162 236 2,541
26. 1985 2.0 0 0 0 3 21 60 88 205 305 435 548 3,437
27. 1990 2.0 0 0 1 19 53 136 219 373 484 614 673 4,118

VAR-Gibbs Model
28. 1980 0.8 2 118 576 1,342 1,591 1,756 1,852 1,376 705 368 189 124
29. 1985 0.8 88 888 2,425 2,251 2,085 1,211 568 267 125 48 31 12
30. 1990 0.8 120 1,611 2,569 2,476 1,621 854 404 196 82 39 18 10
31. 1980 1.2 0 0 6 60 142 415 660 1,218 1,039 1,345 1,238 3,058
32. 1985 1.2 0 7 136 436 972 1,345 1,293 1,340 1,179 897 738 1,366
33. 1990 1.2 0 52 357 829 1,239 1,527 1,383 1,194 956 686 570 992
34. 1980 2.0 0 0 0 0 0 6 12 41 44 106 137 1,649
35. 1985 2.0 0 0 0 1 22 40 74 153 216 277 347 2,448
36. 1990 2.0 0 0 1 11 30 55 115 188 239 367 387 2,664
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Table 5: Average Education Accumulation for High School Graduates
with Tuition Costs (VAR-Gibbs Mehtod with α = 1.2)

Initial Years of Education
Wealth Cohort 12 13 14 15 16 17 18 19 20

$10,000 1980 0 57 509 2,186 4,037 2,460 684 67 0
$10,000 1985 0 16 366 1,752 3,640 3,019 1,137 114 0
$10,000 1990 0 73 622 2,643 3,654 2,239 689 36 0

Table 6: Average Education Accumulation for High School Graduates
with Various Initial Wealth Values
(VAR-Gibbs Mehtod with α = 1.2)

Initial Years of Education
Wealth Cohort 12 13 14 15 16 17 18 19 20

$5,000 1980 0 11 203 1,386 3,715 3,451 1,098 135 1
$5,000 1985 0 1 30 485 2,411 4,047 2,486 522 18
$5,000 1990 0 0 35 511 2,371 4,003 2,434 615 31

$10,000 1980 0 57 509 2,186 4,037 2,460 684 67 0
$10,000 1985 0 16 366 1,752 3,640 3,019 1,137 114 0
$10,000 1990 0 73 622 2,643 3,654 2,239 689 36 0

$20,000 1980 0 0 7 240 1,764 4,183 2,982 786 38
$20,000 1985 0 0 0 66 772 3,329 4,076 1,591 166
$20,000 1990 0 0 0 52 727 3,130 4,002 1,875 214

$50,000 1980 0 0 0 5 280 2,138 4,505 2,688 384
$50,000 1985 0 0 0 0 58 1,013 3,846 4,025 1,058
$50,000 1990 0 0 0 0 36 844 3,519 4,265 1,336

Table 7: Pearson Within-Sample Statistic for Altenative Specifications
For the 1980 Cohort, with VAR-Gibbs Method, α = 1.2

Model Education Fraction
Level in School

Base 0.089 2.320

Hetrogeneity I 0.077 2.448
Hetrogeneity II 0.106 3.245
Hetrogeneity III 0.338 1.478

State Dependence 0.118 2.301
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Figure 1: Return to Education for Mid Career White Males

a. High School Graduates

1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994
5

6

7

8

9

10

11

12

13

14

Years

% Return

.10 .30 .50 .70 .90

b. College Graduates

1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Years

% Return

.10 .30 .50 .70 .90

40



Figure 2: Actual Education Attainments by Cohort
(Source: March CPS)
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Figure 7: Average Accumulated Education for High School Graduate,
by Starting Years (α = 2.0)

a. Perfect Foresight
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Figure 8: Tuition Costs for National Average for Colleges and State Universities
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Figure 9: Simulation Results with Tuition Costs for VAR-Gibbs Model
by Starting Years (α = 1.2)
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Figure 10: Simulations Results with Varying Initial Wealth for VAR-Gibbs Model
by Starting Years (α = 1.2)

a. Average Accumulated Education (initial wealth =$5,000)b. Accumulated Education (Initial wealth=$5,000)
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b. Average Accumulated Education (initial wealth =$50,000)
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Figure 11: Simulation Results for Average Education Level for 1980 Cohort
VAR-Gibbs Method with α = 1.2

a. Unobserved Heterogeneity
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b. State Dependence in Wages
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